Lignite



Lignite is brownish-black in color and has a carbon content around 60–70 percent, a high inherent moisture content sometimes as high as 75 percent,[1] and an ash content ranging from 6–19 percent compared with 6–12 percent for bituminous coal.[3]

The energy content of lignite ranges from 10 to 20 MJ/kg (9–17 million BTU per short ton) on a moist, mineral-matter-free basis. The energy content of lignite consumed in the United States averages 15 MJ/kg (13 million BTU/ton), on the as-received basis (i.e., containing both inherent moisture and mineral matter). The energy content of lignite consumed in Victoria, Australia, averages 8.4 MJ/kg (7.3 million BTU/ton).

Lignite has a high content of volatile matter which makes it easier to convert into gas and liquid petroleum products than higher-ranking coals. Unfortunately, its high moisture content and susceptibility to spontaneous combustion can cause problems in transportation and storage. It is now known that efficient processes which remove latent moisture locked within the structure of brown coal will relegate the risk of spontaneous combustion to the same level as black coal, transform the calorific value of brown coal to a black coal equivalent fuel, and significantly reduce the emissions profile of ‘densified’ brown coal to a level similar to or better than most black coals.[4] However, removing the moisture increases the cost of the final lignite fuel.